The Indoor Localization and Tracking Estimation Method of Mobile Targets in Three-Dimensional Wireless Sensor Networks
نویسندگان
چکیده
Indoor localization is a significant research area in wireless sensor networks (WSNs). Generally, the nodes of WSNs are deployed in the same plane, i.e., the floor, as the target to be positioned, which causes the sensing signal to be influenced or even blocked by unpredictable obstacles, like furniture. However, a 3D system, like Cricket, can reduce the negative impact of obstacles to the maximum extent and guarantee the sensing signal transmission by using the line of sight (LOS). However, most of the traditional localization methods are not available for the new deployment mode. In this paper, we propose the self-localization of beacons method based on the Cayley-Menger determinant, which can determine the positions of beacons stuck in the ceiling; and differential sensitivity analysis (DSA) is also applied to eliminate measurement errors in measurement data fusion. Then, the calibration of beacons scheme is proposed to further refine the locations of beacons by the mobile robot. According to the robot's motion model based on dead reckoning, which is the process of determining one's current position, we employ the H∞ filter and the strong tracking filter (STF) to calibrate the rough locations, respectively. Lastly, the optimal node selection scheme based on geometric dilution precision (GDOP) is presented here, which is able to pick the group of beacons with the minimum GDOP from all of the beacons. Then, we propose the GDOP-based weighting estimation method (GWEM) to associate redundant information with the position of the target. To verify the proposed methods in the paper, we design and conduct a simulation and an experiment in an indoor setting. Compared to EKF and the H∞ filter, the adopted STF method can more effectively calibrate the locations of beacons; GWEM can provide centimeter-level precision in 3D environments by using the combination of beacons that minimizes GDOP.
منابع مشابه
Multiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملOptimizing the Event-based Method of Localization in Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a wireless decentralized structure network consists of many nodes. Nodes can be fixed or mobile. WSN applications typically observe some physical phenomenon through sampling of the environment so determine the location of events is an important issue in WSN. Wireless Localization used to determine the position of nodes. The precise localization in WSNs is a co...
متن کاملA Rssi Based Localization Algorithm for WSN Using a Mobile Anchor Node
Wireless sensor networks attracting a great deal of research interest. Accurate localization of sensor nodes is a strong requirement in a wide area of applications. In recent years, several techniques have been proposed for localization in wireless sensor networks. In this paper we present a localization scheme with using only one mobile anchor station and received signal strength indicator tec...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملThree Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors
Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کامل